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Introduction

Recall: a forward or backward prediction-error filter can each be
realized using a separate tapped-delay-line structure.

Lattice structure discussed in this section provides a powerful way
to combine the FLP and BLP operations into a single structure.
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Order Update for Prediction Errors

(Readings: Haykin §3.8)

Review:

Q signal vector u,,.1[n] = [ Up[n] ] _ [ uln] ]

un—m] | = | upln—1]

@ Levinson-Durbin recursion:

a, = [ Q"Z)_l ] + T [ BQ ] (forward)

m-1

B * Im-1
= { £ } + I [ 0 } (backward)
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Recursive Relations for f,,[n] and b,,[n]
fmln] = aftm 1 [n]; bmln] = 5T 4[]

o FLP:
b= [atio] [ gy |+ [0t ] [ a7y |

fm[n] = fm—1[n] + T bm—1[n — 1]

Q@ BLP:
ot = [0:87] [, 2 ] [snai0] [ 2l |

bm[n] = bm—1[n — 1] + T mfm—1[n]
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Basic Lattice Structure

[ 15’:7[[71]] ] - [ rl,,, rfn ] [ bmf:[},[z]l] }, m=1,2,...,M
Signal Flow Graph (SFG)

Fwa (1) :

buas T _:__,D P’“

-——— uo——

‘.——-——
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Modular Structure

Recall fy[n] = bo[n] = u[n], thus

Fory 1= = = = S j;;in 1 T
T, ¢
| * {
N5 —_"TB T = H
boTn) S by Bt U:-] -:‘ bralnd

fo— = = = =

To increase the order, we simply add more stages and reuse the
earlier computations.

Using a tapped delay line implementation, we need M separate
filters to generate by[n], ba[n], ..., bm[n].

In contrast, a single lattice structure can generate by[n], ..., by[n]
as well as fi[n], ..., fy[n] at the same time.
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Correlation Properties

Given from a zero-mean w.s.s.

process: Predict
(FLP) {ul[n—1],...,uln— M]} = uln]
(BLP) {u[n],uln—1],...,u[n—M+1]} = uln — M|

1. Principle of Orthogonality
i.e., conceptually

E[fm[n]lu*[n—k]] =0 (1 < k < m) fm[n] L u,,[n—1]
E [bm[n]u*[n—k]]=0(0< k< m—1) bm[n] L u,,[n]

2. E [fu[n]u*[n]] = E [bm[n]u*[n — m]] = Py,

Proof :
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Correlation Properties

3. Correlations of error signals across orders:

* — Pm P=m
(BLP) E [bm[n]bf[n]] = {0 i<m ie., bm[n] L bin]
(FLP) E [fn[n]f*[n]] = P for i < m

Proof : (can obtain the case i > m by conjugation)

Remark : The generation of {bo[n], b1[n],...,} is like a
Gram-Schmidt orthogonalization process on {u[n],u[n—1],..., }.

As a result, {bj[n]}i=0,1,... is a new, uncorrelated representation of
{u[n]} containing exactly the same information.
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Correlation Properties

4. Correlations of error signals across orders and time:
E [fm[n]f*[n—]] = E[fn[n+ 0 [n]] =0 (1 <l <m—i,i<m)
E [bm[n]bf[n — €] = E[bm[n +{]bi[n]] =0(0<{<m—i—1,i<m)
Proof :
5. Correlations of error signals across orders and time:
. P i=m
E [fmn + mlf[n +i]] = { "
0 I <
E[bm[n+ m]bf[n+i]]=Pn i<m

Proof :
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6. Cross-correlations of FLP and BLP error signals:

Pm i<m
0 i>m

E [fon[n] b7 [n]] = {

Proof : @EEiiD)
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Joint Process Estimator: Motivation

(Readings: Haykin §3.10; Hayes §7.2.4, §9.2.8)

In (general) Wiener filtering theory, we use {x[n]} process to
estimate a desired response {d[n]}.

Solving the normal equation may require inverting the correlation
matrix Ry.

We now use the lattice structure to obtain a backward prediction
error process {b;[n]} as an equivalent, uncorrelated representation
of {u[n]} that contains exactly the same information.

We then apply an optimal filter on {b;[n]} to estimate {d[n]}.
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Joint Process Estimator: Structure

Fun)

by

d [n[Sn] = k"'byy1[n], where k = [ko, ki, ..., kp]"
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Joint Process Estimator: Result

To determine the optimal weight to minimize MSE of estimation:
@ Denote D as the (M + 1) x (M + 1) correlation matrix of b[n]

D = E [b[n]b"[n]] = diag(Po, P1,. .., Pm)

{bi[n]} ¥, are uncorrelated

@ Let s be the crosscorrelation vector

s2[so,....sm...]" =E[b[n]d*[n]]

© The normal equation for the optimal weight vector is:

ie, k=P ls, i=0,....,M
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Joint Process Estimator: Summary

The name “joint process estimation” refers to the system’s
structure that performs two optimal estimation jointly:

@ One is a lattice predictor (characterized by I'1,..., )
transforming a sequence of correlated samples u[n],
uln—1],...,u[n — M] into a sequence of uncorrelated

samples bo[n], bi[n], ..., bm[n].

@ The other is called a multiple regression filter (characterized
by k), which uses bo[n], ..., bm[n] to produce an estimate of
d[n].
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Inverse Filtering

The lattice predictor discussed just now can be viewed as an
analyzer, i.e., to represent an (approximately) AR process {u[n]}

using {I'm}.
With some reconfiguration, we can obtain an inverse filter or a

synthesizer, i.e., we can reproduce an AR process by applying
white noise {v[n]} as the input to the filter.
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A 2-stage Inverse Filtering

Ll ¢ uln
NNV v ®
Wold—~
Baind

uln] = v[n] = Tju[n — 1] = [5(T1u[n — 1] 4+ u[n — 2])
=v[n] = (M +T1M3)uln—1]— T5 uln—2]
5%/_/ ;/
- uln] + 23 yuln — 1] + 33 puln — 2] = v[n]
= {u[n]} is an AR(2) process.
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Basic Building Block for All-pole Filtering
Y] Kl

o T Xm—1[n] = Xm[n] — T mym—1[n — 1]
j_>§ n, Yl = T 1[0] + ym-1ln — 1]
—— s = Cosinln] + (1 = [ l?)ymaln — 1]

\{\»«EWJ YV«-\ ]

Ym[n] = Tmxm-1[n] + ym-1[n — 1]

L =L T

{Xm[n] = st [] + Tipm-1ln — 1]
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All-pole Filter via Inverse Filtering

[ Xm|[n] } B [ 1 T ] [ Xm—1[n] }
ymln] | [ Tm 1 Ym-1[n —1]
This gives basically the same relation as the forward lattice module:

P

X m- () (( m, -3 ll— X mCn) :TMD'A
' |}

*
\/ wet L) “%—7@ L —-l‘ y mn) = buanlind

= uln] = —3’2‘71 uln—1] — azzu[n — 2] + v[n] v[n] : white noise
Vﬁ"‘l AT & ihrf"‘l uead
e
Wotas—
batnd ¥ b W] : bl
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